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The threshold vector error correction model is a popular tool for the analysis
of spatial price transmission and market integration. In the literature, the pro-
file likelihood estimator is the preferred choice for estimating this model. Yet,
in certain settings this estimator performs poorly. In particular, if the true
thresholds are such that one or more regimes contain only a small number
of observations, if unknown model parameters are numerous or if parameters
differ little between regimes, the profile likelihood estimator displays large bias
and variance. Such settings are likely when studying price transmission. For
simpler, but related threshold models Greb et al. (2011) have developed an al-
ternative estimator, the regularized Bayesian estimator, which does not exhibit
these weaknesses. We explore the properties of this estimator for threshold vec-
tor error correction models. Simulation results show that it outperforms the
profile likelihood estimator, especially in situations in which the profile likeli-
hood estimator fails. Two empirical applications – a reassessment of the seminal
paper by Goodwin and Piggott (2001), and an analysis of price transmission
between German and Spanish markets for pork – demonstrate the relevance
of the new approach for spatial price transmission analysis.
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When assessing the integration of spatially separated markets, agricultural1

economists typically analyze the transmission of price shocks between these mar-2

kets (Fackler and Goodwin 2001). The law of one price (LOP) states that prices3

for a homogeneous good at different locations should differ by no more than the4
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transaction costs of trading the good between these locations. Otherwise traders5

will engage in spatial arbitrage, which increases the price at the low-price location6

and reduces the price at the high-price location until the LOP is restored.7

In spatial equilibrium, the manner in which price shocks are transmitted be-8

tween two locations will therefore depend on the magnitude of the price difference9

between these locations (Goodwin and Piggott 2001; Stephens et al. 2011). Shocks10

that increase the price difference so that it exceeds the costs of trade between the11

two locations will lead to arbitrage and price transmission. However, if the price12

difference remains less than these transaction costs, arbitrage will not be profitable13

and there will be no price transmission. The result is referred to in the literature as14

"regime-dependent" price transmission. Specifically, the spatial equilibrium model15

described above will lead to three regimes delineated by two threshold values that16

equal the transaction costs of trade in one and the other direction, respectively. In17

the outer regimes where the price difference is greater than the transaction costs18

of trade in the one or the other direction, arbitrage will lead to the transmission19

of price shocks. If the price difference lies within the "band of inaction" between20

these transaction costs, prices can evolve independently of one another. The costs21

of trade between two locations need not be symmetric; for example, river transport22

might be more expensive going upstream than it is going downstream. Hence, the23

thresholds that define the boundaries of the spatial price transmission regimes will24

have opposite signs and possibly different magnitudes.25

Threshold vector error correction models (TVECMs) are frequently used to26

model this regime-dependent spatial price transmission process. TVECMs be-27

came popular with Balke and Fomby’s (1997) article on threshold cointegration.28

Goodwin and Piggott’s (2001) seminal paper established TVECMs in price trans-29

mission analysis, and dozens of applications have followed. As an indication of30
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the ongoing popularity of the TVECM, a search of the AgEconSearch website31

(www.ageconsearch.umn.edu) on December 20, 2012 with the keywords "price32

transmission" and "threshold" produced 17 papers posted since 2010.33

Typically, and as we explain in greater detail below, thresholds in TVECMs are34

estimated by maximizing the profile likelihood (Hansen and Seo 2002). However,35

in many settings, this estimator is biased and has a high variance. Lo and Zivot36

(2001) and Balcombe, Bailey, and Brooks (2007) acknowledge this problem. Profile37

likelihood estimates are especially prone to be unreliable in situations characterized38

by large numbers of unknown model parameters besides the thresholds, when39

there is little difference between adjoining regimes, and when the location of the40

thresholds leaves only few observations in one of the regimes (which is inevitable41

in small samples). These problems are generic and emerge in many econometric42

settings, but they are particularly acute when profile likelihood is used to estimate43

TVECMs.44

To cope with these shortcomings, several strategies are proposed in the litera-45

ture. Perhaps the best of these is the modified profile likelihood function intro-46

duced by Barndorff-Nielsen (1983). However, the proposed modifications are usu-47

ally based on regularity assumptions that do not hold for the TVECM. A further48

weakness of the profile likelihood estimator is that it depends on an arbitrary49

trimming parameter that ensures that each regime contains a minimum num-50

ber of observations and, thus, that estimation of the model parameters in that51

regime is possible. This can be a problematic restriction when modeling spatial52

price transmission. If market integration is strong, differences in prices between53

two locations that exceed the transaction cost thresholds – and therefore fall into54

one of the outer regimes – will be corrected quickly. In this case, there will be55

few observations in the outer regimes, and a trimming parameter which forces56
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more observations into these regimes will inevitably lead to unreliable estimates57

of both the threshold values and the model parameters in each regime. Estimation58

is not necessarily easier if the price data originate from markets that are poorly59

integrated because in this case the weak price transmission displayed in the outer60

regimes may be observationally quite similar to the independent price movements61

in the inner "band of inaction". Finally, the non-differentiability of the TVECM’s62

likelihood function with respect to the thresholds exacerbates computation of its63

maximum, which can also be a source of imprecise estimates.64

These problems with the profile likelihood estimator suggest that there is a need65

to rethink the estimation of TVECMs in price transmission analysis. In this article66

we investigate the suitability of an alternative threshold estimator developed for67

generalized threshold regression models (Greb et al. 2011). Among its advantages,68

this alternative estimator does not require a trimming parameter. We demonstrate69

using Monte Carlo experiments that this so-called regularized Bayesian estimator70

clearly outperforms the profile likelihood estimator not only for generalized thresh-71

old regression models, but also specifically for TVECMs, even in settings in which72

the profile likelihood estimator is highly biased and variable. We also show that73

although employing the regularized Bayesian estimator is technically easy, care-74

ful numerical implementation – even if it is computationally intensive – can be75

decisive. Of course, it is important to go beyond the demonstration of the supe-76

rior statistical properties of the regularized Bayesian threshold estimator, and to77

consider as well its implications for empirical price transmission analysis using78

TVECMs. Here, it is crucial to interpret not only the estimated threshold param-79

eters, but also the parameters that describe the dynamics of price transmission80

within each regime. We draw on two empirical applications to illustrate this.81
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The rest of this article is organized as follows. In the next section, we specify82

the TVECM, discuss existing threshold estimators and their deficiencies, present83

the alternative estimator, and comment on computational pitfalls in threshold84

estimation. Subsequently, we illustrate the performance of the new estimator by85

means of a simulation study. As empirical applications we first revisit the analysis86

of spatial market integration for four corn and soybean markets in North Carolina87

detailed in the seminal contribution by Goodwin and Piggott (2001), and second88

analyze spatial price transmission between German and Spanish pork markets.89

The last section concludes.90

Theory91

We begin this section by specifying the TVECM and discussing the methods that92

have been used to estimate it. This is followed by a presentation of the regularized93

Bayesian estimation method that we propose.94

The Threshold Vector Error Correction Model95

Observations pt = (p1,t, p2,t)
′, t= 1 . . . n, of a two-dimensional time series generated96

by a TVECM with three different regimes, which are characterized by parameters97

ρk, θk ∈R2 and Θkm ∈R2×2 for k = 1, 2, 3 and m= 1, . . . ,M , can be written as98

∆pt =



ρ1γ
′pt−1 + θ1 +

M∑
m=1

Θ1m∆pt−m + εt , γ′pt−1 ≤ ψ1 (Regime 1)

ρ2γ
′pt−1 + θ2 +

M∑
m=1

Θ2m∆pt−m + εt , ψ1 < γ′pt−1 ≤ ψ2 (Regime 2)

ρ3γ
′pt−1 + θ3 +

M∑
m=1

Θ3m∆pt−m + εt , ψ2 < γ′pt−1 (Regime 3).

(1)

We assume that pt forms an I(1) time series with cointegrating vector γ ∈R2 and99

error correction term γ′pt. We further assume that the errors denoted by εt have ex-100

pected value E (εt) = 0 and covariance matrix Cov (εt) = Σ =

(
σ2
1 0

0 σ2
2

)
∈ (R+)

2×2.101
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We call ψ1, ψ2 the threshold parameters and define the threshold parameter space102

Ψ to include all ψ = (ψ1, ψ2) such that min(γ′pt)<ψ1 <ψ2 <max(γ′pt), where103

min(γ′pt) and max(γ′pt) are, respectively, the lowest and highest values of the er-104

ror correction term. Although all of the coefficients in equation (1) can vary across105

regimes, some of them can remain constant.106

In the spatial equilibrium setting, p1,t and p2,t are prices at different locations107

and γ is often taken to equal (1,−1)′ so that the error correction term γ′pt measures108

the difference between p1 and p2 at time t. The threshold ψ1 (ψ2) corresponds to the109

transaction costs of trade from location 1 to location 2 (location 2 to location 1).110

Regimes 1 and 3 are the outer regimes in which the violation of spatial equilibrium111

leads to arbitrage and price transmission, and regime 2 represents the inner "band112

of inaction". Not only the estimates of the threshold parameters ψ = (ψ1, ψ2) are113

of economic interest, however. The estimates of ρk (k = 1, 2, 3) (often referred to114

as the "adjustment parameters") are also of interest as they measure the speed115

with which violations of spatial equilibrium between two locations are corrected116

in the respective regimes.117

To express the model in matrix notation, we define vectors ∆pi and εi118

by stacking the ith components of ∆pt and εt, respectively; and I (γ′p≤ ψ1),119

I (ψ1 < γ′p≤ ψ2), and I (ψ2 < γ′p) by stacking I (γ′pt−1 ≤ ψ1), I (ψ1 < γ′pt−1 ≤ ψ2)120

and I (ψ2 < γ′pt−1), respectively. I(·) denotes the indicator function. For obser-121

vations at n time points, an n× d matrix X is constructed by stacking rows122

x′t = (γ′pt−1, 1,∆p
′
t−1, . . . ,∆p

′
t−M) of length d= 2M + 2. βi,k is the ith column of123

the matrix (ρk, θk,Θk1, . . . ,ΘkM)′, i= 1, 2 and k = 1, 2, 3. With diag {I(·)} defined124
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as the diagonal matrix with entries I(·) in the diagonal, we can write125

∆pi = diag {I (γ′p≤ ψ1)}Xβi,1 + diag {I (ψ1 < γ′p≤ ψ2)}Xβi,2(2)

+ diag {I (ψ2 < γ′p)}Xβi,3 + εi

=X1βi,1 +X2βi,2 +X3βi,3 + εi

for i= 1, 2. This leads to a compact representation of model (1),126

∆p=

(
∆p1
∆p2

)
=(I2 ⊗X1)β1 + (I2 ⊗X2)β2 + (I2 ⊗X3)β3 + ε,(3)

where β′k =
(
β′1,k, β

′
2,k

)
for k = 1, 2, 3, I2 ∈R2×2 denotes the identity matrix, and127

X =X1 +X2 +X3.128

A variety of modifications and restrictions of the general TVECM (1) have been129

implemented in price transmission studies. Lo and Zivot (2001) and Ihle (2010, ta-130

ble 2.1) provide details on a number of important specifications. We limit attention131

to the general TVECM. Restrictions of the model imply further information about132

the parameters (or relations between them) and, hence, facilitate estimation. The133

most general case is thus the most challenging. Although the TVECM can be gen-134

eralized to include r thresholds and r + 1 regimes, we focus on a TVECM with two135

thresholds and three regimes as this is the version of the TVECM that is grounded136

in spatial equilibrium theory as outlined above. Generalization is straightforward.137

Commonly used threshold estimators138

The most frequently used threshold estimator in the econometrics literature is the139

profile likelihood estimator (Hansen and Seo 2002; Lo and Zivot 2001). According140

to this method, for each possible pair of the threshold parameters ψ = (ψ1, ψ2) the141

remaining parameters in the likelihood function corresponding to (1) are replaced142

by their maximum likelihood estimates. The pair of thresholds that maximizes the143
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resulting profile likelihood function is selected as the estimate. More precisely, de-144

noting the log-likelihood function of (1) by ` (ψ, β1, β2, β3,Σ), the profile likelihood145

estimator is defined as146

(4) ψ̂pL = arg max `p(ψ) with `p(ψ) = `
(
ψ, β̂1, β̂2, β̂3, Σ̂

)
and β̂k and Σ̂ the maximum likelihood estimates of βk and Σ. Hence,147

(5) `p(ψ)∝−
{

∆p− (I2 ⊗X1)β̂1 − (I2 ⊗X2)β̂2 − (I2 ⊗X3)β̂3

}′
{

∆p− (I2 ⊗X1)β̂1 − (I2 ⊗X2)β̂2 − (I2 ⊗X3)β̂3

}
and β̂k = {(I2 ⊗Xk)

′(I2 ⊗Xk)}−1 (I2 ⊗Xk)
′∆p, k = 1, 2, 3. Since this (logged) pro-148

file likelihood function `p(ψ) is not differentiable with respect to the threshold149

parameters, the thresholds that maximize it are determined by calculating (5) for150

each point on a two-dimensional grid of possible threshold values, which is why151

the literature often refers to the "grid search" method.152

The bias and high variance of the profile likelihood threshold estimator are153

mentioned but not further pursued in the literature on TVECMs (see table 4 and154

figure 1 in Lo and Zivot 2001). The simulation results we present below confirm the155

existence of these weaknesses (see table 1 and figures 1 and 2). Greb et al. (2011)156

provide a detailed analysis of the problems associated with the profile likelihood157

approach to threshold estimation. In summary, there are two principal problems:158

i) the dependence on an arbitrary trimming parameter; and ii) the uncertainty159

inherent in the β̂k which are estimated for each combination of possible threshold160

values. These problems can be pronounced in small samples.161

In spatial arbitrage modeling, the first issue can be decisive. ψ places each ob-162

servation into one of three regimes. In order to compute β̂k, it is essential that at163

least d= dim(βi,k) observations fall into the k-th regime. To ensure this, ψ1 must164
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be greater than or equal to γ′p(d), where γ′p(1), . . . , γ′p(n) is the ordered sequence165

of error correction terms, and ψ2 must be correspondingly less than γ′p(n−d). The166

trimming parameter restricts ψ accordingly. A variety of trimming parameters are167

suggested in the literature. Goodwin and Piggott (2001) specify that each regime168

in the TVECM that they estimate must include at least 25 observations. Bal-169

combe, Bailey, and Brooks (2007) impose the restriction that each regime must170

include at least 20% of the observations in their sample, while Andrews (1993)171

proposes a minimum proportion of 15%. However, if markets are well-integrated,172

then arbitrage will lead to rapid correction of any price differences that exceed173

the thresholds, and the outer regimes will contain correspondingly few observa-174

tions. Especially in small samples, this can lead to a situation in which the outer175

regimes actually contain fewer observations than imposed by the chosen trimming176

parameter. In this case, the resulting estimator cannot be consistent as the thresh-177

old parameter space Ψ (and, hence, the grid that is searched) excludes the true178

thresholds. Despite its potential impact on threshold estimation, the literature179

only offers several arbitrary suggestions for the trimming parameter.180

The second problem naturally becomes more pronounced as the number of181

parameters in the model (i.e. the dimension of βk) increases. Each additional lag182

included in a bivariate TVECM with three regimes adds 12 coefficients. Hence, the183

number of coefficients to be estimated can grow rapidly relative to the potentially184

few observations in the outer regimes. If there is also little difference in coefficients185

between regimes, pinpointing the location of the thresholds becomes increasingly186

difficult.187

As an alternative to profile likelihood, Bayesian estimators have been employed188

in some price transmission studies (Balcombe, Bailey, and Brooks 2007; Balcombe189

and Rapsomanikis 2008). As explained in Greb et al. (2011), the performance of a190
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Bayesian estimator in generalized threshold regression models crucially depends on191

the selected priors. In the absence of any prior knowledge of potential parameter192

values, so-called noninformative priors are the natural choice. However, these can193

distort estimates. In particular, the posterior density associated with noninforma-194

tive priors for the βk inherits the dependence on a trimming parameter from the195

profile likelihood function. Indeed, Greb et al. (2011) show that the posterior den-196

sity takes its largest values exactly for those threshold values that are arbitrarily197

included or excluded from the threshold parameter space Ψ when the trimming198

parameter is varied. Consequently, the trimming parameter strongly affects the199

threshold estimate. Nevertheless, Balcombe, Bailey, and Brooks (2007) and Bal-200

combe and Rapsomanikis (2008) base their Bayesian estimators on noninformative201

priors. Chen (1998) suggests a Bayesian estimator based on a normal prior with202

known hyper-parameters for the βk and a uniform prior for the threshold param-203

eter. However, she designs the latter to assign zero probability to threshold values204

that do not leave a minimum number of observations in each regime, which is205

equivalent to assuming an arbitrary trimming parameter.206

Regularized Bayesian estimator207

Given the deficiencies of profile likelihood and Bayesian estimation with nonin-208

formative priors, we explore the properties of an alternative threshold estimator209

in the context of TVCEMs. This regularized Bayesian (rB) estimator was devel-210

oped for univariate generalized threshold regression models with one threshold211

(Greb et al. 2011). The idea of the estimator is to penalize differences between212

regimes so as to keep these differences reasonably small when the data contain213

little information. The strength of this regularizing penalty is fundamental to the214

estimator. It is determined in a data-driven manner employing the so-called em-215
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pirical Bayes paradigm. The estimator is developed in a Bayesian framework and216

the penalization is a result of the choice of priors. As an important consequence217

of the regularization, the posterior density is well-defined on the entire threshold218

parameter space Ψ. Hence, there is no need to choose a trimming parameter and219

no risk of excluding the true threshold from Ψ. In the setting of generalized thresh-220

old regression models, the rB estimator outperforms commonly used estimators,221

especially when the threshold leaves only few observations in one of the regimes222

or coefficients differ little between regimes.223

Extension of the theory detailed in Greb et al. (2011) to the TVECM with224

two thresholds in equation (1) is straightforward. It involves reparametrizing the225

model in equation (3),226

∆p= (I2 ⊗X1)β1 + (I2 ⊗X2)β2 + (I2 ⊗X3)β3 + ε(6)

+ (I2 ⊗X3)(β3 − β2) + ε

= (I2 ⊗X1)(β1 − β2) + (I2 ⊗X)β2 + (I2 ⊗X3)(β3 − β2) + ε

= (I2 ⊗X1)δ1 + (I2 ⊗X)β2 + (I2 ⊗X3)δ3 + ε,

and specifying a noninformative constant prior for β2 and normal priors for δi,227

δi ∼N (0, σ2
δi
I2d), i= 1, 3. The empirical Bayes strategy amounts to replacing Σ,228

σ2
δ1
, and σ2

δ3
by their maximum likelihood estimates Σ̃, σ̃2

δ1
, and σ̃2

δ3
. As illustrated229

in the appendix, this yields a log posterior density230

(7) P
rB

(ψ|∆p,X)∝−1

2

{
log |Ṽ ||Z ′Ṽ −1Z|+ (∆p− Zβ̃2)′Ṽ −1(∆p− Zβ̃2)

}

with β̃2 = (Z ′Ṽ −1Z)−1Z ′Ṽ −1∆p and Ṽ = Σ̃ + σ̃2
δ1
Z1Z

′
1 + σ̃2

δ3
Z3Z

′
3 for Z = I2 ⊗X,231

Z1 = I2 ⊗X1 and Z3 = I2 ⊗X3. A comparison of the (logged) profile likelihood232

function `p(ψ) in equation (5) with P
rB

(ψ|∆p,X) in equation (7) shows that233

unlike the former, the latter does not depend on β̂k, k = 1, 2, 3, which are234
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not well-defined unless ψ leaves a minimum of d observations in each regime.235

Accordingly, P
rB

(ψ|∆p,X) is defined on the entire threshold parameter space236

Ψ = {(ψ1, ψ2)|min(γ′pt)<ψ1 <ψ2 <max(γ′pt)}.237

The regularized Bayesian threshold estimator ψ̂rB =
(
ψ̂1rB, ψ̂2rB

)
is computed238

as the posterior median239

ψ̂irB∫
min(γ′pt)

P
rB

(ψi|∆p,X)dψi = 0.5, i= 1, 2(8)

assuming a prior P
rB

(ψ|X)∝ I(ψ ∈Ψ) for ψ. Here, P
rB

(ψi|∆p,X) denotes the240

i-th threshold’s marginal posterior density. We choose the median of the posterior241

distribution because it is more robust than the mode and yields more reliable242

results than the mean when this density is skewed (which tends to be the case when243

the true threshold is close to the boundary of the threshold parameter space).244

Computational issues245

Any two threshold values that produce the same allocation of observations into246

regimes produce identical values of the profile likelihood function `p(ψ). Hence,247

`p(ψ) is a step function and not differentiable. The same holds for the posterior248

density P
rB

(ψ|∆p,X). However, searching a grid that includes all of the observed249

error correction terms yields the exact maximum of `p(ψ) and also makes it possible250

to calculate the precise value of the integral of P
rB

(ψ|∆p,X).251

Obviously, a complete grid can be computationally intensive in large samples.252

Hence, in practice, profile likelihood functions are often evaluated on a coarser253

grid. For example, some authors (e.g. Goodwin and Piggott 2001) employ evenly254

spaced grids that divide the threshold parameter space Ψ into a chosen number255

of equal steps and that therefore do not necessarily include each of the observed256

error correction terms. In the absence of local maxima and large jumps between257
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individual steps, such a simplified grid will provide a reasonable approximation of258

the maximum/integral. However, when the dimension of βk is high or the thresh-259

olds leave few observations in one of the regimes, `p(ψ) and P
rB

(ψ|∆p,X) tend to260

be jagged and display several local maxima. In such a case, even a fairly dense grid261

can produce a poor approximation of the true maximum and, consequently, poor262

estimates, if it does not include all function values. We demonstrate this effect of263

an inappropriate grid choice in one of the empirical applications below.264

Computation of the rB estimator is greatly simplified by taking advantage of265

functions for mixed models available in statistical software packages. Again, we266

refer to Greb et al. (2011) for details. R code for calculating rB estimates (for267

the general TVECM in equation (1) and for restricted models such as the BAND-268

TVECM) is available from the authors.269

Simulations270

In a simulation study, we generate data using model (1) with the follow-271

ing parameters: thresholds are set to ψ1 =−4 and ψ2 = 4; adjustment coeffi-272

cients ρ1 = ρ3 = (−0.25, 0)′ and ρ2 = (0, 0)′; intercepts θ1 = (−1, 0)′, θ2 = (0, 0)′,273

θ3 = (1, 0)′; and Θ11 = Θ31 =
(
0.2
0

0.2
0

)
, Θ21 =

(
0
0

0
0

)
. The cointegrating vector274

γ = (1,−1)′ is assumed to be known; this implies an error correction term275

γ′pt = p1,t − p2,t that is simply equal to the difference between p1 and p2. Errors276

are normally distributed, εt ∼N (0, σ2I2) with σ2 = 1. The length of the simulated277

series is n= 200. We have selected the parameters to take on values that are plau-278

sible in real data applications. In most simulations with these parameters about279

one half of the data belongs to the inner and one fourth to each of the outer280

regimes.281
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We estimate thresholds by applying the profile likelihood and rB estimators282

to a Monte Carlo sample of 300 replications of the data generating process de-283

fined above. We show profile likelihood estimates for three different trimming284

parameters. These are, first, the least restrictive trimming parameter possible285

(d= 2M + 2, which ensures that each regime contains at least exactly the mini-286

mum number of observations necessary to estimate all model parameters), second,287

15%, and third, 20% of the sample size. Results are summarized in figures 1 and 2288

together with table 1. The rB estimator clearly outperforms the profile likelihood289

estimator. We observe a considerable reduction in both bias and variance and,290

consequently, mean squared error. In contrast to the profile likelihood estimates,291

the rB estimates are not drawn towards zero. The histograms show that the dis-292

tribution of the rB estimates is also less skewed. Further simulations (including293

restricted models) confirm these findings. Altogether, the results indicate that the294

rB estimator is not only superior for generalized threshold regression models, but295

also for TVECMs specifically.296

Empirical Application 1: Goodwin and Piggott297

(2001) revisited298

In the first empirical application, we revisit Goodwin and Piggott’s (2001) seminal299

analysis of spatial price transmission with TVECMs. We apply the rB estimator300

to their dataset and compare the results with their profile likelihood estimates.301

Goodwin and Piggott (2001) explore daily corn and soybean prices at important302

North Carolina terminal markets (figures 3 and 4). These are Williamston, Candor,303

Cofield, and Kinston for corn, and Fayetteville, Raleigh, Greenville, and Kinston304

for soybeans. Observations range from 2 January 1992 until 4 March 1999. For305

each commodity, Goodwin and Piggott (2001) evaluate pairs consisting of a central306
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market – Williamston for corn and Fayetteville for soybeans – and each of the other307

markets in turn. They estimate the TVECM in equation (1) with logarithmic prices308

by maximizing the (logged) profile likelihood function `p(ψ) under the assumption309

of Gaussian errors εt ∼N (0, σ2I2) (or, equivalently, minimizing the sum of squared310

errors). In accordance with spatial equilibrium theory they assume that ψ1 ≤ 0311

and ψ2 ≥ 0 and search for the maximum of `p(ψ) among those ψ that meet this312

condition. To obtain comparable results, we also incorporate this information in313

the rB estimator; we specify a prior on ψ which is zero for any ψ such that314

ψ1 > 0 or ψ2 < 0, and uniform otherwise. Goodwin and Piggott (2001) evaluate315

the estimating function at 100 equally spaced grid points for each threshold. In316

contrast, we compute the rB estimates exactly, that is, the posterior density is317

evaluated on a grid that is complete (i.e. that includes all observed values of the318

error correction term). Goodwin and Piggott (2001) assume a trimming parameter319

that ensures that each regime contains at least 25 observations. We also impose320

this restriction when replicating their results. As explained above, the rB estimator321

does not require a trimming parameter.322

In table 2, along with the rB and Goodwin and Piggott’s (2001) original pro-323

file likelihood estimates of the threshold parameters ψ1 and ψ2, we also present324

estimates of ρk1 and ρk2 as well as the total adjustment ρk1 − ρk2 for each regime k325

(k = 1, 2, 3). To interpret these results, note that we employ the conventional speci-326

fication of the bivariate TVECM in equation (1) in which the error correction term327

is normalized on the first of the two prices. Thus, assuming that the cointegrating328

vector γ = (1,−1)′ and ignoring the lagged difference terms
M∑
m=1

Θkm∆pt−m in (1),329

each regime k of the bivariate TVECM takes the following equation-by-equation330
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form:331

∆p1,t = ρk1 (p1,t−1 − p2,t−1)(9)

∆p2,t = ρk2 (p1,t−1 − p2,t−1)

For this specification, the stability condition |1− (ρk2 − ρk1)|< 1, which is equiv-332

alent to 0< ρk2 − ρk1 < 2, ensures that deviations from the long-run equilibrium333

p1,t − p2,t = 0 are corrected (Zivot and Wang 2003). This condition, which must334

hold in the outer regimes k = 1 and k = 3 of the TVECM in (1), allows for a335

wide range of error correction behavior. For example, the pair of adjustment pa-336

rameters (ρk1, ρk2) = (−3,−2) satisfies this condition. Given these parameters, if337

p1,t − p2,t = η (i.e. p1 is too large relative to p2 by the amount η), ρk1 =−3 will338

cause p1 to fall by 3η in period t+ 1, and ρk2 =−2 will cause p2 to fall by 2η in339

the same period. Together, these adjustments will restore p1,t − p2,t = 0.340

However, when prices deviate from equilibrium in the context of spatial arbi-341

trage, trade restores equilibrium by causing the higher price to fall and the lower342

price to rise. Hence, it is reasonable to expect that ρk1 ≤ 0 and ρk2 ≥ 0, which343

precludes combinations such as (ρk1, ρk2) = (−3,−2).1 Furthermore, combinations344

that satisfy 1< ρk2 − ρk1 < 2 (for example ρk1 =−1.3 and ρk2 = 0.5) imply expo-345

nentially declining oscillations toward equilibrium, which is difficult to reconcile346

with rational spatial arbitrage. Hence, we also expect that the more restrictive con-347

dition 0< ρk2 − ρk1 < 1 will hold in regimes k = 1 and k = 3. A pair of adjustment348

parameters that satisfies these conditions is, for example, (ρk1, ρk2) = (−0.15, 0.1),349

according to which p1 will fall (rise) in each period to correct 0.15 or 15% of any350

positive (negative) deviation from the equilibrium condition p1,t − p2,t = 0, and p2351

1 It is not necessary that both prices adjust to restore equilibrium. In other words, in regimes
1 and 3 one (but not both) of the adjustment parameters can equal zero. This can occur if, for
example, one of the markets being analyzed is so much larger than the other that its price does
not react to trade flows between the two.
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will correct 0.1 or 10% by moving in the respective opposite direction. Together352

these price changes imply a total adjustment of ρk2 − ρk1 = 0.25 or 25% per period,353

and thus a smooth exponential error correction process with a half-life of roughly354

2.4 periods.2355

In table 2, we see that compared with the profile likelihood estimates, the rB356

estimates for both thresholds are always of greater magnitude. This is confirmed357

by the results reported in the last three columns of the same table, which show (in358

square brackets) for each pair of markets the number of observations assigned to359

each of the three regimes by the respective estimation method. Since the thresholds360

estimated by the regularized Bayesian method are farther from zero, this method361

assigns correspondingly less (more) observations to the outer (inner) regimes.362

In the last three columns of table 2 we also illustrate the effect of using a com-363

plete rather than a uniform grid on the allocation of observations into regimes.364

For the profile likelihood results, the first number in square brackets is the number365

of observations allocated to the respective regime when Goodwin and Piggott’s366

uniform grid is employed, and the second number is the corresponding number367

of observations when a complete grid is employed. If both grids lead to similar368

estimates of the thresholds ψ1 and ψ2, then they will also lead to similar alloca-369

tions of observations into regimes. While this is the case for some market pairs,370

several cases (for example Kinston – Fayetteville) illustrate that a complete grid is371

necessary to ensure correct identification of the global maximum of the likelihood372

function.373

What are the economic implications of these results? Several points can be374

made. First, the fact that the regularized Bayesian threshold estimates are further375

2 In regime 2 (the "band of inaction" between the two thresholds) deviations from the long-
run price equilibrium do not trigger any response and both adjustment parameters ρ21 and ρ22
are expected to equal zero.
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apart can be interpreted as evidence of greater market integration. It implies376

that more observations are in the inner "band of inaction", and correspondingly377

fewer are in the outer bands where spatial equilibrium is violated, triggering trade378

and price adjustments. However, if thresholds are estimates of the transaction379

costs of trade between two locations, then the rB estimates suggest that these380

costs are higher than indicated by the profile likelihood estimates (see O’Connell381

and Wei 2002). Hence, the rB threshold estimates suggest that the markets in382

question are more integrated in the sense that they display fewer violations of383

spatial equilibrium, but also that they are separated by higher transactions costs384

which must be overcome before arbitrage becomes profitable.385

Second, market integration is reflected not only in how often violations of386

spatial equilibrium occur, but also in the speed with which such violations are387

corrected. According to the two-market spatial equilibrium theory discussed above,388

the outer regimes 1 and 3 should be characterized by more rapid error correction389

than the inner regime 2, within which prices can move independently and no error390

correction is expected. The rB estimates of the adjustment parameters fulfill this391

expectation in all of the six cases in table 2. The only slight exception in the392

case of Greenville – Fayetteville, in which total adjustment is as large in regime393

1 as it is in regime 2 (0.048 in both cases). In comparison, the profile likelihood394

estimates are compatible with two-market spatial equilibrium theory in only two395

of the six cases in table 2 (Candor – Williamston and Cofield – Williamston). In396

the other four cases the profile likelihood estimates display a number of important397

inconsistencies. In the cases of Kinston – Williamston and Kinston – Fayetteville,398

for example, total adjustment in regime 2 is considerably stronger than in regimes399

1 and 3. And in the cases of Raleigh – Fayetteville and Greenville – Fayetteville400

total adjustment is roughly twice as strong in regime 2 as it is in regime 3.401
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Turning to the magnitudes of the estimated adjustment parameters we see402

that the rB results are not only more consistent with spatial equilibrium theory,403

they also indicate more rapid correction of disequilibrium in regimes 1 and 3 and,404

thus, stronger market integration. With the exception of regime 1 in the case of405

Greenville – Fayetteville, total adjustment in the outer regimes is always stronger406

according to the rB estimates, and often considerably so, than it is according to the407

profile likelihood estimates. Specifically, using the rB estimator, the largest total408

adjustment (0.471) is found in regime 3 for the case of Raleigh – Fayetteville, and409

total adjustment in the outer regimes amounts to 0.3 or more in four of the six410

cases in table 2. While these adjustment effects might appear relatively small, they411

are much larger than the largest total adjustment estimated by profile likelihood412

(0.132 in regime 1 for Raleigh - Fayetteville). Furthermore, since the underlying413

price data are daily, a total adjustment of 0.3 corresponds to an adjustment half-414

life of just under two days, which is evidence of quite rapid reaction to arbitrage415

opportunities.416

With two exceptions, all of the statistically significant estimated adjustment417

parameters in table 2 have the expected signs. One exception is found in regime418

2 for the case of Kinston – Williamston, where the adjustment parameter cor-419

responding to the first equation (for price changes in Kinston) is positive rather420

than negative. This result, which holds for both the rB and the profile likelihood421

estimates, is compensated in both cases by a slightly larger and correctly-signed422

adjustment parameter in the second equation (for price changes in Williamston),423

so that the total adjustment effect is positive and small. The same happens for424

the profile likelihood estimates in the case of Cofield – Williamston. Overall, rela-425

tively few estimated adjustment parameters are statistically significant, and many426

of the larger rB estimates of adjustment parameters in regimes 1 and 3 are not427
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significant. This is presumably due to the small numbers of observations in these428

regimes in most cases.429

One other aspect of the results in table 2 deserves mention. For two of the mar-430

ket pairs (Candor – Williamston and especially Greenville – Fayetteville) the rB431

estimates of the adjustment parameters are comparatively small and similar across432

regimes. In the case of Greenville – Fayetteville, for example, the total adjustments433

in regimes 1, 2 and 3 are 0.048, 0.048 and 0.078, respectively, compared with, for434

example 0.302, 0.060 and 0.298 in the case of Kinston – Fayetteville. These results435

might indicate that the two-threshold, three-regime model of price transmission is436

misspecified. Sephton (2003), who also revisits the Goodwin and Piggott (2001)437

data, finds that the pairs Raleigh-Fayetteville and Greenville-Fayetteville display438

little evidence of threshold effects. Our rB estimates of very similar or identical439

adjustment coefficients across regimes appear to corroborate Sephton’s finding for440

Greenville – Fayetteville.441

Empirical Application 2: Price transmission442

between German and Spanish pork prices443

As a second empirical application, we analyze transmission between German and444

Spanish pork prices. The analysis is carried out using the data presented in figure 5,445

which are average weekly prices of grade E pig carcasses for Germany and Spain in446

Euro per 100 kg between May 21, 1989 and October 17, 2010 (1091 observations).447

We specify a TVECM with three regimes,448

∆pt =



ρ1γ
′pt−1 + θ1 +

M∑
m=1

Θ1m∆pt−m + εt , γ′pt−1 ≤ ψ1 (Regime 1)

ρ2γ
′pt−1 + θ2 +

M∑
m=1

Θ2m∆pt−m + εt , ψ1 < γ′pt−1 ≤ ψ2 (Regime 2)

ρ3γ
′pt−1 + θ3 +

M∑
m=1

Θ3m∆pt−m + εt , ψ2 < γ′pt−1 (Regime 3),

(10)
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with ∆pt =
(

∆pGermanyt ,∆pSpaint

)′
and M = 3. We apply profile likelihood and the449

rB estimator with the error correction term γ′pt−1 defined as the difference between450

the Spanish and the German prices, γ′pt = pGermanyt − pSpaint . Since the sample451

period spans more than twenty years and includes events such as the introduction452

of the Euro, the postulate of constant transaction costs (ψ1 and ψ2) over time is453

likely to be an oversimplification. It is beyond the scope of this article to model454

variable transaction costs, but this should be kept in mind when interpreting the455

results.456

We plot the profile likelihood for the upper threshold (ψ2) in figure 6. To gen-457

erate this figure, the lower threshold (ψ1) is fixed at its profile likelihood esti-458

mate. We see that the profile likelihood reaches its maximum at the boundary459

of the range defined by the smallest possible trimming parameter (i.e. the re-460

quirement that each regime contains at least one observation per parameter to461

be estimated). Hence, any more restrictive trimming parameter (such as requiring462

that each regime contains at least 2.5 or 5% of all observations) strongly influences463

the profile likelihood estimate (see figure 6), rendering it arbitrary and unreliable.464

Compared with an estimate ψ̂2 = 26.1 for the least restrictive trimming parame-465

ter, requiring 2.5% (5%) of the observations to fall into each regime produces the466

estimate ψ̂2 = 21.8 (ψ̂2 = 14.0).467

The rB estimator does not require an arbitrary trimming parameter. It pro-468

duces threshold estimates (−37.8, 34.8) that are considerably larger in magnitude469

than the profile likelihood estimates (−27.9, 26.1). As mentioned above with re-470

spect to the analysis of the Goodwin and Piggott (2001) data, larger estimated471

thresholds define a wider "band of inaction" in regime 2 that can be interpreted472

as evidence of poorer market integration. However, in the case of the German and473
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Spanish pork prices the profile likelihood thresholds estimates are smaller because474

they are restricted by the trimming parameter. Hence, they reflect biased estima-475

tion rather than lower transaction costs of trade and greater market integration.476

Furthermore, the rB estimator produces estimates of the adjustment parame-477

ters that are more plausible than their profile likelihood counterparts (table 3). In478

regime 1, where the difference between the German and Spanish prices is less than479

the lower threshold value, the profile likelihood estimate of the adjustment param-480

eter for the Spanish price is large and significant (−0.665), but has an implausible481

sign. Both magnitude and sign are implausible for the corresponding parameter482

estimate in regime 3 (−1.193), where the difference between the German and the483

Spanish prices exceeds the upper threshold. The corresponding estimated adjust-484

ment parameters for the German price in regimes 1 and 3 (−0.198 and −0.334)485

have the expected negative signs, but they are insignificant. Altogether, the total486

adjustments for regimes 1 and 3 are negative according to the profile likelihood487

method (see the third-to-last and last colums of table 3). Hence, the profile like-488

lihood estimates suggest that there is no mechanism that returns German and489

Spanish prices to their long run equilibrium when shocks drive them apart.490

In comparison, the rB estimates of the adjustment parameters make consid-491

erably more sense. All of the rB estimates that are significant have the expected492

sign, and together they indicate that when the difference between the German and493

the Spanish prices exceeds one of the thresholds, adjustments are triggered that494

return these prices to their long run equilibrium (total adjustment equals 0.318 in495

regime 1 and 0.347 in regime 3).496

In summary, the empirical applications illustrate the advantages of the rB es-497

timator in the context of spatial price transmission analysis. The rB estimator498

does not depend on a trimming parameter that arbitrarily influences the profile499
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likelihood results in the application with Spanish and German pork prices. Fur-500

thermore, in both applications the rB estimates of the adjustment parameters are501

more consistent with spatial equilibrium theory and price transmission between502

the markets in question than the corresponding profile likelihood estimates.503

Conclusions504

We discuss the estimation of TVCEMs in spatial price transmission analysis. We505

point out shortcomings of the common (profile likelihood) estimation procedure506

and emphasize the relevance of these problems for applied price transmission stud-507

ies. As an alternative, we suggest employing a regularized Bayesian estimator508

(Greb et al. 2011), and we demonstrate this estimator’s superior performance in509

a simulation study. Revisiting the empirical analysis in Goodwin and Piggott’s510

influential paper on TVECMs in price transmission analysis, we find that the reg-511

ularized Bayesian estimates are free of several inconsistencies that characterise the512

profile likelihood estimates. A second application, with German and Spanish pork513

prices, confirms the advantages of the regularized Bayesian estimator in spatial514

price transmission modeling, producing results that are more consistent with the515

theory of spatial equilibrium than the corresponding profile likelihood results.516

Future work could move beyond the pairwise consideration of markets to study517

multivariate sets of prices and the more complex multiple-threshold relationships518

that exist between them. Another extension would be to investigate time-varying519

thresholds, since especially for longer time-series the assumption of constant trans-520

action costs is questionable.521
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Appendix527

We aim to compute the posterior density P
rB

(ψ|∆p,X) for the model528

∆p= (I2 ⊗X1)δ1 + (I2 ⊗X)β2 + (I2 ⊗X3)δ3 + ε, ε∼N (0,Σ), Σ =

(
σ2
1 0

0 σ2
2

)

with a normal prior δ1 ∼N (0, σ2
δ1
I2d), where d= 2M + 2 with M the number529

of lags included in the model; a uniform prior β2 ∼U
(
R2d
)
; a normal prior530

δ3 ∼N (0, σ2
δ3
I2d); and a uniform prior ψ∼U(ψ ∈Ψ).531

To this end, we first calculate P
rB

(∆p|ψ,X), since532

P
rB

(ψ|∆p,X) = P
rB

(∆p|ψ,X)P
rB

(ψ|X)
/
P

rB
(∆p|X)∝P

rB
(∆p|ψ,X)

given a constant prior P
rB

(ψ|X). Employing an empirical Bayes approach, it suf-533

fices to compute P
rB

(
∆p|ψ,X,Σ, σ2

δ1
, σ2

δ3

)
: parameters Σ, σ2

δ1
, and σ2

δ3
are replaced534

by their maximum likelihood estimates Σ̃, σ̃2
δ1
, and σ̃2

δ3
. Given our specification of535

priors,536

P
rB

(
∆p|ψ,X,Σ, σ2

δ1
, σ2

δ3

)
=

∫
P

rB

(
∆p, β2|ψ,X,Σ, σ2

δ1
, σ2

δ3

)
dβ2

=

∫
P

rB

(
∆p|β2, ψ,X,Σ, σ2

δ1
, σ2

δ3

)
P

rB

(
β2|ψ,X,Σ, σ2

δ1
, σ2

δ3

)
dβ2

=

∫
P

rB

(
∆p|β2, ψ,X,Σ, σ2

δ1
, σ2

δ3

)
dβ2
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and537

∆p|β2, ψ,X,Σ,σ2
δ1
, σ2

δ3
∼

N
{

(I2 ⊗X)β2,Σ + σ2
δ1

(I2 ⊗X1)(I2 ⊗X1)
′ + σ2

δ3
(I2 ⊗X3)(I2 ⊗X3)

′} .
To simplify notation, define Z = I2 ⊗X, Z1 = I2 ⊗X1, Z3 = I2 ⊗X3, and538

V = Σ + σ2
δ1
Z1Z

′
1 + σ2

δ3
Z3Z

′
3 and write539

∆p|β2, ψ,X,Σ, σ2
δ1
, σ2

δ3
∼N (Zβ2, V ) .

Consequently,540

P
rB

(
∆p|ψ,X,Σ, σ2

δ1
, σ2

δ3

)
=

∫ (
1

2π

)2n/2
1√
|V |

exp

{
−1

2
(∆p− Zβ2)′V −1(∆p− Zβ2)

}
dβ2

=

(
1

2π

)2n/2
1√
|V |

exp

{
−1

2
(∆p− Zβ̃2)′V −1(∆p− Zβ̃2)

}
·

∫
exp

{
−1

2
(β2 − β̃2)′Z ′V −1Z(β2 − β̃2)

}
dβ2

=

(
1

2π

)2n/2
1√
|V |

exp

{
−1

2
(∆p− Zβ̃2)′V −1(∆p− Zβ̃2)

}
(2π)2d/2

1√
|Z ′V −1Z|

=

(
1

2π

)2(n−d)/2
1√

|V ||Z ′V −1Z|
exp

{
−1

2
(∆p− Zβ̃2)′V −1(∆p− Zβ̃2)

}
with β̃2 = (Z ′V −1Z)−1Z ′V −1∆p. Substituting Σ̃, σ̃2

δ1
, and σ̃2

δ3
for Σ, σ2

δ1
, and σ2

δ3
,541

respectively, that is, Ṽ = Σ̃ + σ̃2
δ1
Z1Z

′
1 + σ̃2

δ3
Z3Z

′
3 for V , yields a log posterior den-542

sity543

P
rB

(ψ|∆p,X)∝P
rB

(∆p|ψ,X)∝−1

2

{
log |Ṽ ||Z ′Ṽ −1Z|+ (∆p− Zβ̃2)′Ṽ −1(∆p− Zβ̃2)

}
.
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Note: The horizontal dashed gray line indicates the true threshold. The dark lines
in the shaded boxes are the respective sample means. "rB" denotes the regularized
Bayesian estimates. "pL min", "pL 15%", and "pL 20%" denote profile likelihood
estimates with trimming parameters equal to the smallest possible value ( d=
2M + 2), 15% of the sample size, and 20% of the sample size, respectively.

Figure 1. Simulation results – boxplots
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Figure 2. Simulation results – histograms

Note: "rB" denotes the regularized Bayesian estimates. "pL min", "pL 15%", and
"pL 20%" denote profile likelihood estimates with trimming parameters equal to
the smallest possible value (d= 2M + 2), 15% of the sample size, and 20% of the
sample size, respectively.
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Table 1. Simulation Results
Regularized Bayesian estimator Profile likelihood estimator
lower threshold upper threshold lower threshold upper threshold

min 15% 20 % min 15% 20 %

true -4 4 -4 -4 -4 4 4 4
mean -3.76 3.66 -1.82 -1.22 -0.93 1.69 0.92 0.85

(2.16) (1.90) (3.40) (2.67) (2.45) (3.50) (2.79) (2.52)
MSE 4.71 3.73 16.31 14.86 15.40 17.57 17.21 16.24

Note: Standard errors are reported in parentheses below the mean. "min", "15%",
and "20%" denote trimming parameters equal to the smallest possible value (d=
2M + 2), 15% of the sample size, and 20% of the sample size, respectively.
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Source: Goodwin and Piggott (2001), who kindly made these data available.

Figure 3. Logged daily corn prices at four North Carolina terminal markets
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Figure 4. Logged daily soybean prices at four North Carolina terminal markets
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Table 2. Estimates for the Data in Figures 3 and 4 – TVECM with three Regimes

Est. Dep.var. ρ1 σ (ρ1) ψ1 ρ2 σ (ρ2) ψ2 ρ3 σ (ρ3)
Total(ρ1) Total(ρ2) Total(ρ3)
[#obs.] [#obs.] [#obs.]

Corn: Candor-Williamston

pL
∆pCAN 0.030 (0.020) −0.0255 −0.003 (0.039) 0.0073 −0.008 (0.018) 0.047 0.009 0.057

∆pWIL 0.077 (0.020) 0.006 (0.039) 0.049 (0.018) [295/299] [762/676] [716/798]

rB
∆pCAN 0.064 (0.055) −0.0799 0.003 (0.013) 0.0677 0.064 (0.055) 0.097 0.04 0.097

∆pWIL 0.162 (0.055) (0.016) 0.043 (0.013) (0.020) 0.162 (0.055) [11] [1760] [2]

Corn: Cofield-Williamston

pL
∆pCOF −0.056 (0.021) −0.0572 0.027 (0.012) 0.0594 0.017 (0.044) 0.118 0.007 0.076

∆pWIL 0.062 (0.020) 0.034 (0.012) 0.094 (0.043) [69/69] [1669/1698] [35/6]

rB
∆pCOF −0.144 (0.170) −0.1908 0.011 (0.010) 0.0688 −0.267 (0.143) 0.363 0.033 0.305

∆pWIL 0.220 (0.170) (0.032) 0.043 (0.010) (0.019) 0.037 (0.142) [1] [1769] [3]

Corn: Kinston-Williamston

pL
∆pKIN 0.064 (0.068) −0.0125 0.156 (0.052) 0.0178 0.061 (0.107) 0.005 0.028 0.001

∆pWIL 0.070 (0.068) 0.184 (0.052) 0.062 (0.108) [249/198] [1469/1568] [55/7]

rB
∆pKIN −0.179 (0.346) −0.0293 0.107 (0.038) 0.0192 −0.180 (0.357) 0.456 0.023 0.456

∆pWIL 0.276 (0.347) (0.009) 0.130 (0.038) (0.009) 0.276 (0.357) [6] [1762] [5]

Soybeans: Raleigh-Fayetteville

pL
∆pRAL −0.126 (0.115) −0.006 −0.098 (0.106) 0.0103 −0.039 (0.134) 0.132 0.009 0.004

∆pFAY 0.006 (0.116) −0.089 (0.107) −0.035 (0.136) [166/499] [1560/1227] [47/47]
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Est. Dep.var. ρ1 σ (ρ1) ψ1 ρ2 σ (ρ2) ψ2 ρ3 σ (ρ3)
Total(ρ1) Total(ρ2) Total(ρ3)
[#obs.] [#obs.] [#obs.]

rB
∆pRAL −0.200 (0.161) −0.0353 −0.081 (0.063) 0.021 −0.219 (0.280) 0.371 0.093 0.471

∆pFAY 0.171 (0.161) (0.009) 0.012 (0.063) (0.004) 0.252 (0.280) [5] [1764] [4]

Soybeans: Greenville-Fayetteville

pL
∆pGRE −0.012 (0.028) −0.0102 0.028 (0.039) 0.0216 0.055 (0.079) 0.058 0.04 0.022

∆pFAY 0.046 (0.028) 0.068 (0.039) 0.077 (0.080) [411/438] [1292/1030] [70/305]

rB
∆pGRE 0.012 (0.021) −0.1011 0.012 (0.021) 0.0251 0.017 (0.097) 0.048 0.048 0.078

∆pFAY 0.060 (0.022) (0.024) 0.060 (0.022) (0.005) 0.095 (0.098) [2] [1760] [11]

Soybeans: Kinston-Fayetteville

pL
∆pKIN −0.012 (0.027) −0.006 0.023 (0.183) 0.007 −0.026 (0.036) 0.061 0.125 0.084

∆pFAY 0.050 (0.026) 0.148 (0.180) 0.058 (0.035) [544/6] [508/1755] [721/12]

rB
∆pKIN −0.231 (0.207) −0.1201 −0.005 (0.021) 0.0265 −0.112 (0.326) 0.302 0.06 0.298

∆pFAY 0.071 (0.207) (0.012) 0.055 (0.021) (0.003) 0.186 (0.324) [1] [1765] [7]

Notes:

- pL is the profile likelihood estimator; rB is the regularized Bayesian estimator.

- pL estimates are computed as in Goodwin and Piggott with a trimming parameter that ensures that each regime contains
at least 25 observations.

- Standard errors of the estimated adjustment parameters (ρk) are provided in brackets. These must be interpreted with care
because they are computed without accounting for the variability of the threshold estimate. Estimates that are significant at
the 10% level are in bold. Standard errors for rB threshold estimates (in brackets below the estimate) are calculated in the
customary Bayesian manner as their posterior standard deviation. To the best of our knowledge, how to compute standard
errors for pL threshold estimates in TVECMs remains an open question.

- The number in square brackets below Total(ρk) is the estimated number of observations in regime k. For pL, the first number
corresponds to Goodwin and Piggott’s estimates, the second to pL estimates based on a complete grid.
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Source: European Commission: http://ec.europa.eu/agriculture/markets/pig/porcs.pdf.

Figure 5. Weekly prices for grade E pig carcasses in Germany and Spain
(Euro per 100 kg)
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The dashed vertical line indicates the profile likelihood estimate for the upper
threshold, ψ̂2, estimated using the least restrictive possible trimming parameter.
Solid grey lines indicate how the threshold parameter space is restricted when
2.5% (5%) of the observations are required to fall into each regime. The lower
threshold is fixed at its profile likelihood estimate, ψ̂1 =−27.9.

Figure 6. Profile likelihood function for the upper threshold, ψ2, esti-
mated with the pig price data in figure 5.
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Table 3. Estimates for the Data in Figure 5 – TVECM with three Regimes

Est. Dep.var. ρ1 σ (ρ1) ψ1 ρ2 σ (ρ2) ψ2 ρ3 σ (ρ3)
Total(ρ1) Total(ρ2) Total(ρ3)
[#obs.] [#obs.] [#obs.]

pL
∆pGermany −0.198 (0.342) −27.9 −0.028 (0.012) 26.1 −0.334 (1.448) −0.467 0.08 −0.859

∆pSpain −0.665 (0.365) 0.052 (0.012) −1.193 (1.545) [20] [1059] [8]

rB
∆pGermany −0.288 (0.103) −37.8 −0.028 (0.011) 34.8 −0.355 (0.115) 0.318 0.092 0.347

∆pSpain 0.030 (0.106) (7.4) 0.063 (0.012) (8.6) −0.008 (0.117) [1] [1085] [1]

Note: The notes below table 2 apply.


